NEW METHOD FOR THE SYNTHESIS OF DEHYDROTRIPEPTIDES, USING N-CARBOXY α-DEHYDROAMINO ACID ANHYDRIDE AS SYNTHON

Yasuchika YONEZAWA, Toyofumi YAMADA, and Chung-gi SHIN* Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

Various dehydrotripeptides, containing one or two $\alpha\text{-dehydro-}$ amino acid residues, were readily synthesized by using N-carboxy a-dehydroamino acid anhydride as synthon of dehydropeptide unit.

Recently, much attention has been focused on the synthesis of dehydropeptide (DHP), containing one or more α -dehydroamino acid (DHA) residues, and the correlation between the structure and the bioactivity of DHP. 1-5)

So far, we have developed a few synthetic methods for DHP by the stepwise elongation of DHA with α -amino acid or another DHA and by the β -elimination of peptide having a leaving group. 7) In the preceding paper, 8) we reported briefly the synthesis of N-carboxy α -dehydroamino acid anhydride (Δ NCA) $^9)$ from N-benzyloxycarbonyl-DHA and the application of ANCA to the dehydrooligopeptide synthesis without using any coupling reagent. Here, we will report the very useful synthetic method for a variety of DHP by using N-acyl ANCA as synthon of DHA or DHP unit.

A solution of N-acetyl (Z)- Δ NCA (1), prepared by the acetylation of (Z)geometric ANCA (0.3 mol) with acetyl chloride (0.4 mol) in THF (40 ml) by the usual way, 8) was treated with (L,L)-dipeptide methyl ester (0.3 mol) in THF (20 ml) at 0-10 $^{\rm O}{\rm C}$ for 1 hr. The resulting solution was made basic to pH 8-9 with triethylamine. After removal of solvent, the residue was dissolved in ethyl acetate (100 ml) and washed successively with 3% HCl, saturated NaHCO, aqueous solution, water, and then dried over anhydrous Na2SO4. The evaporation of ethyl acetate gave a crude solid residue, which was purified on a silica gel column using a mixture of benzene-acetone (10 : 1 v/v) as the eluent to give (Z,L,L)-dehydrotripeptide (2) as colorless needles.

Treatment of 1 with (L,Z)-dehydrodipeptide ethyl ester 6) followed by similar

work-up gave (Z,L,Z)-dehydrotripeptide (3) as colorless needles.

On the other hand, to synthesize the tripeptide containing a DHA residue at center, Δ NCA was acylated with an equimolar phthalyl-(L)-amino acid chloride (0.3 mol) in the presence of triethylamine in THF (40 ml) at 5-10 $^{\rm O}$ C for 1 hr, followed by the coupling with (L)-amino acid methyl ester at room temperature for 1.5 hr. After removal of solvent, the residue obtained was submitted to similar work-up to give (L,Z,L)-dehydrotripeptide (4) as colorless needles.

In conclusion, it was found that the ΔNCA method developed newly by us was very versatile and applicable to the various dehydropeptide synthesses by combination of α -amino acid and DHA. Further works including the analogous study are now in progress.

References

Specific rotation was measured in methanol (c 1.0) at 25 °C.

- 1) T. Kitagawa, T. Tamura, and H. Taniyama, J. Biochem., <u>81</u>, 1757 (1977).
- 2) "Bioactive Peptides produced by Microorganisms," ed by H. Umezawa, T. Takita, and T. Shiba, Kodansha, Tokyo (1978).
- 3) Y. Shimohigashi and N. Izumiya, Yuki Gosei Kyokaishi, 36, 1023 (1978).
- 4) B. Anderson, D. C. Hodgkin, and M. A. Viswamutra, Nature, 225, 233 (1970).
- 5) For example, E. Gross, H. H. Kiltz, and E. Nebelin, Hoppe-Seyler's Z. Physiol. Chem., 354, 810 (1973).
- Y. Yonezawa, C. Shin, Y. Ono, and J. Yoshimura, Bull. Chem. Soc. Jpn., 53, 2905 (1980).
- 7) C. Shin, Y. Yonezawa, M. Takahashi, and J. Yoshimura, Bull. Chem. Soc. Jpn., 54, 1132 (1981).
- 8) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1981, 1635.
- 9) In this paper, the symbol Δ indicates a double bond of DHA residue.